

University of Amsterdam

Data analysis in GCxGC

Gabriel Vivó Truyols Analytical-chemistry group Van 't Hoff Institute for Molecular Sciences University of Amsterdam <u>g.vivotruyols@uva.nl</u>

University of Amsterdam

The complexity of the data changes

The changes from 1D to 2D

Instruments can be classified according to the order of the tensor of data used to represent a single experiment:

Zero-order instruments	Produce	Zero-order tensor (e.g. a number)	Example	pH - meter		
First-order instruments	Produce	First-order tensor (e.g. a vector)	Example	UV-VIS spectrometer		
Second-order instruments	Produce	Second-order tensor (e.g. a matrix)	Example	LC-MS, GCxGC		
Third-order instrument	Produce	Third-order tensor (e.g. a "cube" of data)	Example	GCxGC-MS		
n th -order instrument exist, but they are rare						

Basically, the steps are the same, but the algorithms used for each step may be different.

University of Amsterdam

First step: visualization

Raw data in 2D chromatography

Visualisation

Cylindrical coordinates. An alternative way to represent the data.

Visualisation

GCxGC, Riva - 2014 J.J.A.M. Weusten, E.P.P.A. Derks , J.H.M. Mommers, S. van der Wal, Anal. Chim. Acta 726 (2012), 9

University of Amsterdam

Interpolation

Visualisation

Welcome to the magic world of chemometrics!

University of Amsterdam

Conclusions

Visualisation

- Visualising is simple, and gives a lot of information.
- Folding (one-dimensional) data into (2D) image introduces discontinuities in the edges. Other visualization methods (cylindrical coordinates) possibloe.
- Phasing can be of great help.
- Careful with "cosmetic" effects!

Second step: Pre-processing

Base-line drifts.

University of Amsterdam

Pre-processing

Consider the positions with the smallest values in each half

Estimate local background parameters using neighboring values

> Interpolate the main background trend and substract it

GCxGC, Riva - 2014

S.E. Reichenbach, M. Ni, D. Zhang, E.B. Ledford Jr., J. Chromatogr. A, 985 (2003) 47 - 56

University of Amsterdam

Noise removal. Smoothing and derivatives.

Pre-processing

Savitzky-Golay filter is the most common method

Two parameters should be optmisized

- Window size
- Polynomial degree

These parameters govern how much correlated noise is removed

 Large window sizes and low polynomial degree

Too much noise is removed (chromatograms appear deformed)

 Small window sizes and large polynomial degrees

Too much noise remains

Noise removal. Spikes.

Pre-processing

A good way of removing spikes consists of passing a median filter (before the Savitsky-Golay filter)

Original data	Base-line correction	Median filter	Savitzky-Golay filter
		Parameter to tune: window size	Parameters to tune: window size and polynomial
	Optimising three parameters		

University of Amsterdam

Alignment.

Pre-processing

Alignment is not always necessary, depending on the final objective of the analysis

Between-chromatogram alignment

Using 1D techniques (unfolded data) Using 2D techniques (folded data) Between-modulation alignment

Rarely done

University of Amsterdam

Conclusions

Pre-processing

- Pre-processing methods are almost the same: onedimensional = two-dimensional. Normally done in the (prefolded) raw data.
- Every case needs a particular solution (it always exists, but some care should be taken!)

University of Amsterdam

Third step: measure

J. De Bock et al., doi 10.1007/11558484

GCxGC, Riva - 2014

G. Vivó-Truyols, H.G. Janssen, J. Chromatogr. A, doi:10.1016/j.chroma.2009.12.063

Peak detectioni in two steps.

Peak detection

S. Peters, G. Vivó-Truyols, P.J. Marriott and P.J. Schoenmakers, J. Chromatogr. A 1156 (2007) 14.
E.J.C. van der Klift, G. Vivó-Truyols, F.W. Claassen, F.L. van Holthoon, T.A. van Beek, J. Chromatogr. A, 1178 (2008) 43.

University of Amsterdam

Peak detectioni in two steps.

Peak detection

Merge peaks that belong to the same compound according to 2nd-dimension retention time differences

University of Amsterdam

Peak detectioni in two steps.

Peak detection

Merge peaks that belong to the same compound according to 2nd-dimension retention time differences

University of Amsterdam

Conclusions

Peak detection

- Two methods available: (inverse) watershed, and two-step peak detection process.
- Peak detection seems to be still a subject of discussion.

Main problem: determine the number of components behind the peak cluster

University of Amsterdam

Deconvolution mehtods.

Deconvolution

A.E. Sinha, J.L. Hope, B.J. Prazen, C.G. Fraga, E.J. Nilsson, R.E. Synovec, J. Chromatogr. A, 1056 (2004) 145 - 154

GCxGC, Riva - 2014

- Less chance to miss important compounds
- Normally done with the unfolded (raw) data, but not always (e.g. N-PLS)
- Alignment not important, but peak tracking is essential (normally MS should be present)
- Chance to miss important compounds (close to the S/N)
- (Truly) 1D method

University of Amsterdam

Pattern recognition in GCxGC. Supervised methods.

Pattern recognition

In supervised pattern recognition of GCxGC, a tremendous reduction of variables is performed (form millions to a few tens/hundreds)

Any method will be prone to overfitting

Any variable pre-reduction (e.g. using Fisher ratios) should be done within a cross-validation loop

Otherwise the results will be optimistic (a method that seems to work, when in fact it only works for that data)

University of Amsterdam

Pattern recognition in GCxGC. Example of a wrong strategy *Pattern recognition*

Objective: discovering metabolites responsible for cancer tumor

Obtain GCxGC chromatograms for sick (50) and healthy (50) Variable selection: Fisher ratio on the raw data Supervised pattern recognition: PLS-DA to separate sick from healthy

Consider the coefficients from PLS-DA as indicators of potential metabolites

... but the variable pre-selection has been done with the full data set!!

Probably align GCXGC data Keep only variables with a FRzthreshold

Aren't you Overfitting?

No, I've been crossvalidating the PLS-DA

University of Amsterdam

Conclusions

Multivariate methods

- Deconvolution: normally done with the unfolded data (less problems with between-modulation alignment)
- Deconvolution: problem to establish the number of compounds (normally done in a manual way)
- Two ways for pattern recognition: with raw data (normally preferred) or with peak table.
- Careful with validation of supervised pattern recognition.
 Variable pre-selection should be included in the validation loop.