Data analysis in chromatography

The old battle of Bayesian vs. frequentist revisited

Gabriel Vivó Truyols Van 't Hoff institute for molecular sciences University of Amsterdam

Introduction

How much iron is in my milk?

Introduction

Reference method: acid reaction

New method: microwave degradation

Is the new method providing the same results as the reference method?

Faster (but... does it work?)

Introduction

Is the new method working correctly?

Go to the lab, perform an experiment on a sample of n objects...

... conclusion: "the new method provides the same results as the reference" or "the new method does not work"

Limited information (information only about a sample)

Statistical inference

General conclusion (information about the population)

Frequentist approach

Is the new method working correctly?

Go to the lab, perform an experiment on a sample of n objects...

... conclusion: "the new method provides the same results as the reference" or "the new method does not work"

The iron concentration of the pill is for sure 100 mg.

We measure the pill 6 times with the new method. The results are: 98.9; 100.3; 99.7; 99.0; 100.6; 98.6

The mean value is: 99.5

Statistical inference

... "true mean" means here "population mean", μ, or the mean obtained with infinite replications with the new method

Frequentist approach

Is the new method working correctly?

Go to the lab, perform an experiment on a sample of n objects...

... conclusion: "the new method provides the same results as the reference" or "the new method does not work"

The iron concentration of the pill is for sure 100 mg.
We measure the pill 6 times with the new method. The results are: 98.9; 100.3; 99.7; 99.0; 100.6; 98.6

Suppose that the true mean is 100... what is the chance of obtaining this data (or more extreme)?

The mean value is: 99.5

Frequentist approach

Is the new method working correctly?

Go to the lab, perform an experiment on a sample of n objects...

... conclusion: "the new method provides the same results as the reference" or "the new method does not work"

The irr We m ne 98.9;

The probability (p-value) of obtaining this result (or more extreme) is 21%

the : 8.6

nill is

Suppose that the true mean is 100... what is the chance of obtaining this data (or more extreme)?

As this probability (p-value) is not low enough (below α), we don't have enough "proof" to reject the fact that the true mean is 100

Frequentist approach

Frequentist approach

p-value is...

... the probability of obtaining the data obtained or more extreme supposing the null hypothesis true

p-value is NOT...

... the probability that the null hypothesis is true, given the data.

So, a p-value does NOT inform us AT ALL about the validity of a certain hypothesis...

However

... by following the procedure of rejecting the null hypothesis when p-value< α the probabilities of type-I and type-II error can be calculated.

Introduction

Is the new method working?

Introduction

Are there alternatives?

... I can only tell you the probability of obtaining this data or more extreme under the supposition that the method works...

I think there are alternatives...

Odds form (only two hypotheses considered, H₀ and H₁)

 $\frac{p(H_0|D)}{p(H_1|D)} = \frac{p(D|H_0)}{p(D|H_1)} \frac{p(H_0)}{p(H_1)}$ Likelihood ratio (sometimes called

Bayes' factor)

Posterior odds

Prior odds

The Bayes' rule

Bayesian approach

Let's consider the two competing hypothesis, and let's see how our "prior odds" about the validity of the two hypothesis is updated when we take the experimental data (D) into consideration

The Bayes' rule. The prior odds.

Bayesian approach

The method works

The method does not work H₁

 H_0

Before inspecting the data, what is my "preference" for each of the two competing hypothesis?

If I don't have any "preference", $p(H_0) = p(H_1) = 0.5$, and the prior odds is 0.5/0.5=1

The Bayes' rule. The likelihood ratio.

Bayesian approach

The method works

 H_0

The method does not work

 H_1

Probability of obtaining the data under the supposition that H₀ is true

Probability of obtaining the data under the supposition that H₁ is true

Data (D)

We measure the pill 6 times with the new method. The result is: 98.9; 100.3; 99.7; 99.0; 100.6; 98.6

The Bayes' rule. The likelihood ratio.

Bayesian approach

The Bayes' rule. The posterior odds.

Bayesian approach

Posterior odds

$$\frac{p(H_0|D)}{p(H_1|D)}$$

1.86

Likelihood ratio

$$\frac{p(\mathbf{D}|H_0)}{p(\mathbf{D}|H_1)}$$

1.86

Prior odds

$$\frac{p(H_0)}{p(H_1)}$$

X

Once I consider the data, what is my "preference" for each of the two competing hypothesis?

Now the probability of H₀ is 1.86 times higher than the probability of H₁

Before inspecting the data, what is my "preference" for each of the two competing hypothesis?

No preference (prior odds = 1)

Frequentist vs. Bayesian

Introduction

Lesson 1

I am a frequentist!

I am Bayesian!

I have no information about the probability of H_i being true...

The decision is "already taken" (obtain a binary answer!)

I am Bayesian!

I get the probability of H_i being true...

... then my granddad takes the decision according to this probability...

Frequentist vs. Bayesian

Introduction

Incorporating new evidence...

... I am wondering how I could deal with the incorporation of new experiments (is my decision going to change?)

I think I have an idea!

The Bayes' rule. Incorporating new evidence...

Bayesian approach

Evidence D₁ ... my first set of experiments

Posterior odds

$$\frac{p(H_0|\mathbf{D}_1)}{p(H_1|\mathbf{D}_1)}$$

Likelihood ratio

$$\frac{p(D_1|H_0)}{p(D_1|H_1)}$$

Prior odds

$$\frac{p(H_0)}{p(H_1)}$$

Evidence D₂ ... a second set of experiments (or other information)

Posterior odds

$$\frac{p(H_0|\mathbf{D}_1,\mathbf{D}_2)}{p(H_1|\mathbf{D}_1,\mathbf{D}_2)}$$

Likelihood ratio

$$\frac{p(D_2|H_0,D_1)}{p(D_2|H_0,D_1)}$$

Prior odds

$$\frac{p(H_0|\mathbf{D}_1)}{p(H_1|\mathbf{D}_1)}$$

The Bayes' rule. Incorporating new evidence...

Bayesian approach

Posterior odds

$$\frac{p(H_0|\mathbf{D}_1,\mathbf{D}_2)}{p(H_1|\mathbf{D}_1,\mathbf{D}_2)}$$

Likelihood ratio

$$\frac{p(D_2|H_0,D_1)}{p(D_2|H_0,D_1)}$$

Prior odds

$$\frac{p(H_0|\mathbf{D}_1)}{p(H_1|\mathbf{D}_1)}$$

If D₁ and D₂ are independent...

Frequentist vs. Bayesian

Introduction

Lesson 2

Why Bayesian?

I am not the first ...

Why Bayesian?

Automation is our challenge now...

Why Bayesian?

Evolution of the instrumentation

1 bit

GC: 1 KB

HPLC: 1KB

GC-MS; ~100 KB HPLC-DAD; ~100 KB

HPLC-MS; 1 MB

GCxGC: ~100 KB

GCxGC-MS; LCxLC-MS. 1 GB/hour

GCxGC-HRMS; LCxLC-HRMS. 15 GB/hour

Automation using a frequentist approach

Why Bayesian?

Data

Algorithm

 $\sum \boldsymbol{\theta} \sin \boldsymbol{\epsilon}$

Information

There is a chromatographic peak at t_R=12 min.

These 10 peaks in these 10 chromatograms belong to the same compound.

... etc.

In a sense, the machines are "taking responsibility" on the decision...

... and only the final result is shown.

Automation using a frequentist approach

Why Bayesian?

Automation using a "Bayesian" approach

Why Bayesian?

Automation using a Bayesian approach

Why Bayesian?

Data

87% chance: There is a peak centred at t_R =12 min.

13% chance: There is no peak centred at t_R =12 min.

20% chance: Peaks 1-9 belong to the same compound. Peak 10 is different.

15% chance: Peaks 1-5,7-9 belong to the same compound. Peaks 6 and 10 are different.

not

Information

a collection of all possibilities (ranked by their probability)

In a sense, the machines are 'taking responsibility" on the decision...

... etc.

... and only the float estat is shown.

It is up to the chromatographer to take the final decision

Bayesian statistics in court

Why Bayesian?

Posterior odds

 $\frac{p(H_0|D)}{p(H_1|D)}$

Likelihood ratio

 $\frac{p(\mathbf{D}|H_0)}{p(\mathbf{D}|H_1)}$

Prior odds

 $\frac{p(H_0)}{p(H_1)}$

Χ

The suspect is innocent

The suspect is guilty

The supon only

The scientist does not decide upon the validity of H₀ or H₁, only calculates the likelihood ratio (the value of the evidence)

Bayesian statistics in data automation

Why Bayesian?

Posterior odds

 $\frac{p(H_0|D)}{p(H_1|D)}$

Likelihood ratio

 $\frac{p(\mathbf{D}|H_0)}{p(\mathbf{D}|H_1)}$

Prior odds

 $\frac{p(H_0)}{p(H_1)}$

X

I take the decision!!

The data is only used to "update" our prior probability on a situation (but the decision is not "taken" by the algorithm)

Prior experiments
Bibliographic information

Some practical applications in chromatography

_/\

Example I: peak detection in two-dimensional chromatography

Example I

Data courtesy of Teris van Beek, University of Wageningen (NL)

Example I: peak detection in two-dimensional chromatography

Example I

Each of these dots corresponds to a detected peak

M Va

Example I: peak detection in two-dimensional chromatography

Example I

Possibility 1

Possibility 2

_/\

Example I: peak detection in two-dimensional chromatography

Example I

In general, any group of 1D peaks may exhibit x possibilities of arrangement in 2D peaks that do not violate the rules of unimodality and ${}^2t_R < T$ (tolerance criterion)!!!

_/\

Example I: peak detection in two-dimensional chromatography

Example I

Let's consider all possible solutions of peak arrangement

Example I

Discard those solutions that violate the unimodality criterion. Discard also those solutions that imply a too fragmented chromatographic peak.

Example I

Sol 2

Sol n

Apply the Bayes theorem to calculate the probability of each solution

Hypothesis

 H_1

 H_2

Peak A

:

$$p(H_i|\mathbf{D}) = p(\mathbf{D}|H_i) \frac{p(H_i)}{p(\mathbf{D})}$$

Example I

Sol 2

Sol n

Apply the Bayes theorem to calculate the probability of each solution

Hypothesis

 H_1

 H_2

Peak A

:

$$p(H_i|\mathbf{D}) = p(\mathbf{D}|H_i) \frac{p(H_i)}{p(\mathbf{D})}$$

Example I

$$p(H_i|\mathbf{D}) = p(\mathbf{D}|H_i) \frac{p(H_i)}{p(\mathbf{D})}$$

 $p(H_i|\mathbf{D}) \propto p(\mathbf{D}|H_i)p(H_i)$

 $p(H_i|\mathbf{D}) \propto p(\mathbf{D}|H_i)$

I'm interested only in a relative value of $p(H_n|\mathbf{D})$

All the priors have the same probability

Example I

How much does your 1D peak profile look like a peak?

Are the 2nd dimension retention times too far away?

$$p(\mathbf{D}|Hi)$$

$$= \int ... \int \int_{j=-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} exp \left[-\frac{1}{2} \left(\frac{y_j - Aexp \left[-\frac{1}{2} \left(\frac{(\phi + j)m}{^{1}\sigma} \right)^{2} \right]}{\sigma_y} \right)^{2} \right] \frac{1}{\sqrt{2\pi}} exp \left[-\frac{1}{2} \left(\frac{^{2}tr_j - ^{2}tr}{\sigma_{2tr}} \right)^{2} \right] p(\phi)p(^{1}s)p(A)d\phi d^{1}s dA$$

Frequentist vs. Bayesian

Introduction

Lesson 3

Example I

Possibility 1

Possibility 2

Posterior probabilty = 0.51

Posterior probability = 0.49

_/\

Example I: peak detection in two-dimensional chromatography

Example I

A map of likelihoods can be constructed, leading to the most probable 2D peak arrangement given the information that the chromatographer has at the moment

Frequentist vs. Bayesian

Introduction

Lesson 4

Example I

Google

Example I: peak detection in two-dimensional chromatography

Chromatography columns

Example I

Example II

Example II

Posterior odds

 $p(H_0|D)$ $p(H_1|D)$

=

Likelihood ratio

Prior odds

 $\frac{p(H_0)}{p(H_1)}$

The point IS NOT affected by a peak

The point IS affected by a peak

The data is only used to "update" our prior probability on a situation (but the decision is not "taken" by the algorithm)

X

Example II

Example II

Frequentist vs. Bayesian

Introduction

Lesson 5

Example III: screening in forensic toxicology with LC-MS

Example III

The problem...

... in a forensic lab, we are intrested in pre-screening the presence/abssence of a fixed list of (~500) compounds using LC-MS

We want a probabilistic value about the presence/absence of a compound, not a final result!

Example III

Example III: screening in forensic toxicology with LC-MS

Example III

Likelihood ratio

$$\frac{p(D|H_0)}{p(D|H_1)}$$

Prior odds

$$\frac{p(H_0)}{p(H_1)}$$

 $p(D|H_1)$ Marginalize

This contains LC and MS information (and includes isotopic information)

The presence/absence of chemical noise

X

- The possible retention times of the peak (with shifts)
- The possible positions of the MS signal (detector uncertainty)

Frequentist vs. Bayesian

Introduction

Lesson 6

Example IV: Peak tracking in GCxGC

Example IV

GCxGC in condition 1

A. Barcaru, G. Vivó-Truyols, J. Chromatogr. A, in preparation

Conclusions

- Automation: the data-analysis part doesn't involve a decision → It is just informing the scientist about the probabilities of the different hypothesis being true...
- 2D peak example: Bayesian analysis computes not only the best peak arrangement, but how probable the rest of alternatives are.
- 1D analysis: Robust and objective method, from prior information (e.g. Statistical Overlap Theory) to final information (probability distributions).
- The methodology can be naturally extended for toxicology screening (including MS). It can handle elegantly complex situation (e.g. different number of isotopes, aducts, etc.). We are beating "Mass Hunter" (Agilent).

Special thanks to...

Acknowledgements

- Analytical-chemistry group (University of Amsterdam)
- T. van Beek (Wageningen university, NL), (2D peak detection example)
- COMFOR project (NWO) for funding.
- COAST consortium (NWO + DSM + NFI + Rikilt) for funding.

Thanks for your attention!